High-Efficiency Polycrystalline Perovskite Light-Emitting Diodes Based on Mixed Cations

Supporting Information

Abstract: We have achieved high-efficiency polycrystalline perovskite light-emitting diodes (PeLEDs) based on formamidinium (FA) and cesium (Cs) mixed cations without quantum dot synthesis. Uniform single-phase FA$_{1-x}$Cs$_x$PbBr$_3$ polycrystalline films were fabricated by one-step formation with various FA:Cs molar proportions; then the influences of chemical composition on film morphology, crystal structure, photoluminescence (PL), and electroluminescence (EL) were systematically investigated. Incorporation of Cs cations in FAPbBr$_3$ significantly reduced the average grain size (to 199 nm for FA:Cs = 90:10) and trap density; these changes consequently increased PL quantum efficiency (PLQE) and PL lifetime of FA$_{1-x}$Cs$_x$PbBr$_3$ films and current efficiency (CE) of PeLEDs. Further increase in Cs molar proportion from 10 mol % decreased crystallinity and purity, increased trap density, and correspondingly decreased PLQE, PL lifetime, and CE. Incorporation of Cs also increased photostability of FA$_{1-x}$Cs$_x$PbBr$_3$ films, possibly due to suppressed formation of light-induced metastable states. FA$_{1-x}$Cs$_x$PbBr$_3$ PeLEDs show the maximum CE = 14.5 cd A$^{-1}$ at FA:Cs = 90:10 with very narrow EL spectral width (21–24 nm); this is the highest CE among FA-Cs-based PeLEDs reported to date. This work provides an understanding of the influences of Cs incorporation on the chemical, structural, and luminescent properties of FAPbBr$_3$ polycrystalline films and a breakthrough to increase the efficiency of FA$_{1-x}$Cs$_x$PbBr$_3$ PeLEDs.

Keywords: cation hybridization, formamidinium lead bromide, A-site cations, alternative emitters, composition control

Metal halide perovskites (MHPs) are semiconducting materials that have provided significant breakthroughs in diverse electronics applications including light-emitting diodes (LEDs), solar cells, lasers, and synaptic devices. Use of MHPs in solar cell research has achieved a certified power conversion efficiency (PCE) of >20%, which has been attributed to the advantages of MHPs as excellent light harvesters, such as broad light absorption spectra with sharp band edge, small exciton binding energy, and long (micrometer-scale) charge-carrier diffusion lengths. MHPs are also promising as light-emitting materials with high color purity for next-generation natural-color displays, due to narrow spectral width (full width at half-maximum (FWHM) < 20 nm), tunable emission wavelength (400 ≤ λ ≤ 780 nm), comparable ionization energy (IE), with those of common semiconducting materials in organic LEDs (OLEDs), and low material cost.

Received: January 16, 2018
Accepted: March 1, 2018
Published: March 1, 2018
After pioneering reports on MAPbBr₃ MHP LEDs (PeLEDs) that exhibited high brightness (>100 cd m⁻²) at room temperature (maximum current efficiency (CEmax) = 0.3 and 0.577 cd A⁻¹), the electroluminescence (EL) efficiency of PeLEDs has been rapidly increased to CEmax = 42.9 cd A⁻¹ (maximum external quantum efficiency (EQEmax) = 8.53%) within only 1.5 years, by fine stoichiometry control to remove luminescence quenchers and by nanograin engineering to reduce MHP grain size. Also, diverse approaches such as flexible anodes, quasi-2D structure, and colloidal quantum dots (QDs) have shown the great potential of PeLEDs for highly efficient flexible displays. Particularly, incorporation of larger organic ammonium cations than MA⁺ enabled realization of highly efficient and stable infrared PeLEDs (EQE max = 8.8%, 11.7%) and green PeLEDs (CE max = 17.1 cd A⁻¹).

MHPs generally have the chemical formula AMX₃, where A is a monovalent cation [e.g., methylammonium (MA) CH₃NH₃⁺, cesium Cs⁺, formamidinium (FA) CH(NH₂)₂⁺], M is a divalent transition metal [e.g., Pb²⁺, Sn²⁺], and X is a halide anion [Cl⁻, Br⁻, I⁻]. Because of the strong dependence of optoelectronic and structural properties of MHPs on the ionic components, the control of A-site cations and halide anions has been widely studied to control band gap and increase device efficiency and stability.

Although MAPbBr₃-based PeLEDs have shown EL efficiency that is even comparable to that of organic LEDs, MA-based MHPs suffer from susceptibility to degradation by heat or moisture. To avoid these problems and stabilize MHP crystal structure, stable A-site cations such as FA⁺ and Cs⁺ have been evaluated as replacements for MA⁺. The use of thermally stable MHPs enables the application of high-temperature fabrication processes and reduces thermal degradation of MHP layers in PeLEDs during fabrication processes and device operation. FAPbX₃ has a larger lattice constant than does MAPbX₃ due to the larger ionic radius of FA⁺ (2.79 Å) than that of MA⁺ (2.70 Å); this difference increases the structural and thermal stability of the MHP (thermal decomposition temperature ≈ 150 °C for MAPbBr₃ and ≈ 200 °C for FAPbBr₃).

FAPbI₃ was suggested as an alternative to MAPbI₃ for light harvesting because FAPbI₃ has superior thermal stability, reduced band gap, and longer carrier lifetime, but it may spontaneously form a nonperovskite δ-phase at room temper-
Cs-based all-inorganic MHPs have also been studied to reduce the chemical instability of MA-based MHPs.39–42 CsPbX₃ MHPs have a much higher thermal decomposition temperature (~580 °C for CsPbBr₃) than does MAPbX₃ (~220 °C for MAPbBr₃).40,43 In addition, CsPbBr₃ has excellent optoelectronic properties such as a narrow emission spectrum (17 ≤ fwhm ≤ 19 nm)39,41 high PL quantum efficiency (PLQE) up to 90% (in solution),39,41 high electron mobility (∼1000 cm² V⁻¹ s⁻¹), and long carrier relaxation lifetime (∼2.5 μs in single crystals).42 To take full use of these advantages, diverse approaches to achieve stable and efficient CsPbBr₃ PeLEDs have been reported.42,45,46 However, pure CsPbBr₃ polycrystalline layers cannot be readily formed into thick uniform films, so polycrystalline pure CsPbBr₃ PeLEDs without additives have shown low EL efficiency (CEmax = 0.035, 0.57, and 5.39 cd A⁻¹).42,45,46

To overcome the disadvantages of MHPs based on pure FA or Cs, and thereby improve device stability and efficiency, the development of mixed-cation-based MHP systems has been considered.22,35,36,47,48 Hybridization of FA⁺ and Cs⁺ cations and control of their stoichiometry can modify the structural and chemical characteristics of MHPs and thus increase device efficiency and stability.22,35,36,47,48 Partially alloying Cs⁺ cations into unstable FAⅠ₃PbI₃ or FAⅠ₃PbBr₃ significantly reduced its susceptibility to degradation by heat, light, and moisture; increased its phase stability due to entropic stabilization and modified its tolerance factor (0.94–0.98) by lattice contraction; and increased its PCE by reducing trap density.22,47,48 Furthermore, FA₁₋ₓCsₓPb(I₁₋ₓBrₓ)₃ systems have the highest crystallinity and charge-carrier mobility and the longest charge-carrier lifetime in the optimal range of stoichiometry (0.10 < y < 0.30).36 Recently, FA-Cs mixed-cation PeLEDs based on MHP QDs have shown a CEmax of 10.09 cd A⁻¹.22 However, insulating ligands around QDs hinder charge injection into QDs, and low concentration of dispersed MHP QD solutions impairs the formation of thick uniform films. Also, nonradiative recombination by surface defects on QDs and a complex process to synthesize QDs are strong impediments to their application in PeLEDs. Therefore, highly bright and efficient mixed-cation PeLEDs should be developed based on a simple process to fabricate polycrystalline MHP layers instead of using QD synthesis.

Here, we demonstrate fabrication of high-efficiency polycrystalline PeLEDs based on FA-Cs mixed cations (Figure 1A) by one-step formation of uniform FA₁₋ₓCsₓPbBr₃ polycrystalline films. Partial substitution of Cs⁺ cations (≤10 mol %) for FA⁺ cations significantly decreased MHP grain size and trap density and thereby improved PLQE of MHP films and EL efficiency of PeLEDs; the FA₁₋ₓCsₓPbBr₃ PeLEDs at the optimized molar ratio of FA:Cs = 90:10 exhibited a much higher CEmax of 14.5 cd A⁻¹ than those of pure FA/PbBr₃ PeLEDs (CEmax = 7.96 cd A⁻¹). At a Cs molar proportion of >10%, CE gradually decreased, due to the decrease in PLQE, which was ascribed to decreased crystallinity and increased trap density, as suggested by X-ray diffraction (XRD), PL lifetime, and temperature-dependent PL results. Gradual changes in XRD patterns, X-ray photoelectron spectroscopy (XPS), steady-state PL, and EL spectra indicate that the FA₁₋ₓCsₓPbBr₃ forms a single phase without phase separation. This study offers simple methods to increase luminescence efficiency of polycrystalline films and PeLEDs based on FA and Cs.

RESULTS AND DISCUSSION

The partial substitution of Cs⁺ cations for FA⁺ cations significantly changed the film morphology (Figure 1B,C). The pure FA/PbBr₃ polycrystalline films had grain sizes ranging from 100 to 600 nm (average = 325 nm) (Figure S1A). Use of 10–40 mol % Cs⁺ cations significantly reduced MHP grain size (Figure S1B, Figure S2); the FA₀.9Cs₀.1PbBr₃ polycrystalline films showed much more closely packed grains with smaller grain size (average = 199 nm) (Figure S1B) than did pure FA/PbBr₃ films. The FA₁₋ₓCsₓPbBr₃ polycrystalline films were 200–300 nm thick (Figure 1D).

The crystal structures of the fabricated FA₁₋ₓCsₓPbBr₃ polycrystalline films and their changes with FA:Cs molar ratio were investigated by measuring XRD patterns (Figure 1E, Figures S3, S4, and Table S1). The XRD patterns of FA/PbBr₃ films exhibited (100), (110), (200), and (210) peaks at 14.84°, 21.04°, 29.88°, and 33.54°, which are consistent with a pseudocubic Pm₃m phase and agree with a previous report.33 The lattice constant of FA/PbBr₃ was calculated to be 5.962 Å, which is slightly larger than the lattice constant of MAPbBr₃ (5.88–5.92 Å).2,33 As the Cs molar proportion in the FA₁₋ₓCsₓPbBr₃ films increased, the peaks shifted to higher 2θ positions (Figure 1E, Figure S3); this trend indicates that the lattice constant gradually decreased from 5.962 Å (for FA/PbBr₃) to 5.907 Å (for FA₀.7Cs₀.3PbBr₃) because of the gradual decrease in lattice constants (for single crystals).37 Based on these results and temperature-dependent PL results, gradual changes in XRD patterns, X-ray photoelectron spectroscopy (XPS), steady-state PL, and EL spectra indicate that the FA₁₋ₓCsₓPbBr₃ forms a single phase without phase separation. This study offers simple methods to increase luminescence efficiency of polycrystalline films and PeLEDs based on FA and Cs.
occur because the grains consist of many crystallites or because the instrument contribution to peak broadening is not negligible. Furthermore, films with FA:Cs = 80:20 and 70:30 showed a small XRD peak at ∼12.5° (Figure 1E, Figure S3D; marked with an asterisk); we assigned this peak to PbBr2 after considering previous reports.47,51 The emergence of a PbBr2 peak implies that the reaction between FABr/CsBr and PbBr2 was incomplete at a Cs molar proportion of ≥20%.

Before fabricating FA1−xCsxFxPbBr3 PeLEDs, we studied optical properties of the FA1−xCsxFxPbBr3 polycrystalline films. As the Cs molar proportion increased from FA:Cs = 100:0 to 0:100, the PL peaks blue-shifted from 537 nm to 519 nm (Figure 2A, Figures S5A). The optical band gap of the FA1−xCsxFxPbBr3 films was calculated using a Tauc plot of their absorption spectra (Figure S5B,C). As the Cs molar proportion increased from 0% to 40%, the optical band gap linearly increased from ∼2.29 eV to ∼2.32 eV. These changes correspond to a gradual shift in XRD peak positions (Figure 1E, Figure S3) and confirm the presence of single-phase FA1−xCsxFxPbBr3 crystals. The gradual changes in the PL peak wavelength and the optical band gap (Figure S5) are attributed to gradual change in the crystal structure; the incorporation of Cs in FAPbBr3 causes reduction of the Br−Pb−Br angle (octahedral tilting) and consequently reduces the extent of Pb−Br orbital overlap.52 The reduction in the Pb−Br orbital overlap pushes the valence band maximum (VBM) and conduction band minimum toward lower energies and thereby increases the optical band gap.52

To study how Cs incorporation affects PL intensity, absolute PLQEs of FA1−xCsxFxPbBr3 films were measured. To prevent PLQE loss caused by glass substrates and self-organized conducting polymer (SOC) bottom layers, FA1−xCsxFxPbBr3 films were deposited directly on quartz substrates. As the Cs molar proportion increased, the average PLQE (over 10−12 measurements) increased from 20.6% at FA:Cs = 100:0, to 28.3% at FA:Cs = 90:10, then decreased to 16.1% at FA:Cs = 80:20 and to 11% at FA:Cs = 60:40 (laser power density = 900 mW cm−2) (Figure 2B, Table S2).

The trend in PL lifetime of FA1−xCsxFxPbBr3 films (quartz/FA1−xCsxFxPbBr3/poly(methyl methacrylate) (PMMA)) was the same as the trend in PLQE (Figure 2C). The PL lifetime curves were obtained using time-correlated single-photon counting (TCSPC) and analyzed using biexponential fitting.53 Fitting results include PL lifetimes τ and fractions f for fast-decay (τ1, f1) and slow-decay (τ2, f2) components and intensity-weighted average lifetime τav (Table S3). τav increased from 573.0 ns to 623.1 ns as the Cs molar proportion increased from 0% to 10%. As the Cs molar proportion further increased from 10%, τav gradually decreased to 17.5 ns (at FA:Cs = 60:40) and f1 gradually increased from 10.9% to 71.2%. The PL lifetime curves were also plotted separately to exclude different background noise levels (Figure S6). The exciton diffusion length of the FA0.9Cs0.1PbBr3 polycrystalline film (on quartz)…
The incorporation of Cs also increased photostability of FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} films. PL intensity of the films was measured continuously during exposure to light in ambient conditions (Figure 2E). The PL intensity of the FAPbBr\textsubscript{3} film abruptly decreased to 6.1% of the initial intensity at 2000 s. The photostability of FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} films gradually increased as Cs molar proportion increased; the FA\textsubscript{0.9}Cs\textsubscript{0.1}PbBr\textsubscript{3} and FA\textsubscript{0.8}Cs\textsubscript{0.2}PbBr\textsubscript{3} films retained 24.0% and 80.3% of their initial PL intensities at 2000 s, respectively. Possible origins of the PL decrease are decomposition of FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} crystals, structural modulation of Pb−Br octahedral framworks,59 formation of metastable trap states (localized polaronic states),60 and localized stoichiometric variations in bromide content.61,62 To determine whether the PL decrease is a result of decomposition of FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} the steady-state PL and absorption spectra (Figure S7) and XRD patterns (Figure S8) of FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} films were measured before and after the photostability measurement. The PL peak positions and the absorption spectra did not change, the XRD patterns were almost unchanged, and no PbBr\textsubscript{2} peak emerged after the photostability measurement. Therefore, the decomposition of FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} was eliminated as a possible origin of the PL decrease. The effect of environment on the photostability was examined by comparing the photostability of FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} films with and without glass encapsulation performed in a nitrogen atmosphere (Figure S9). The trend in photostability with increasing Cs molar proportion was consistent in both environments (air and nitrogen). Unexpectedly, the nitrogen atmosphere did not improve the photostability of FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} films; we attribute this to the following: (1) the PL decrease by light exposure did not accompany the decomposition of FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} that can be accelerated by oxygen and moisture;63 (2) the oxygen boost effect64 that increases the PLQE of FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} films can compensate the PL decrease by light exposure in air.

Right after the photostability measurement, the PL intensity of FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} films was measured at intervals of 300 s while being stored in the dark in ambient conditions (Figure 2F). The light source was turned on only for several seconds at each measurement. In all FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} films the PL intensity increased very gradually; this response indicates that the PL decrease by continuous light exposure was not attributed to decomposition of FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} but to formation of (or transformation into) light-induced metastable states (or structures)59−62 that can return to their original states very slowly (on the order of minutes or hours). We speculate that the incorporation of Cs may inhibit the formation of light-induced states and consequently increase photostability. The increased photostability might also be related to lattice contraction or octahedral tilting; these structural changes can influence the bond strengths and the orbital overlap between the cations (FA+, Cs+, Pb2+) and Br− anions.22,35,52 Despite the higher trap density of the FA\textsubscript{0.9}Cs\textsubscript{0.1}PbBr\textsubscript{3} film than that of the FA\textsubscript{0.8}Cs\textsubscript{0.2}PbBr\textsubscript{3} film, the FA\textsubscript{0.8}Cs\textsubscript{0.2}PbBr\textsubscript{3} film showed a better photostability; it implies that formation of light-induced metastable states are not affected by the trap density. To reveal the precise origin of increased photostability by Cs incorporation, further studies are required.

We constructed an energy level diagram (Figure 3) based on ultraviolet photoelectron spectroscopy (UPS) spectra (Figure S10) of FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} polycrystalline films. To exclude the effect of 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBI) molecules at the film surfaces, the FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} polycrystall-
Films were fabricated using a solvent-based nanocrystal pinning process that uses pure chloroform to wash out dimethyl sulfoxide (DMSO). We analyzed the changes in secondary cutoff with molar ratio from FA:Cs = 100:0 to 70:30. The work function (WF) was calculated by subtracting secondary cutoff energy from the energy of exciting radiation (He I, 21.2 eV), assuming a Fermi level of 0 eV as a reference. The secondary cutoff energies were estimated as the x-axis coordinates of the intersecting points of two tangents. As the Cs molar proportion was increased from 0% to 10%, the WF slightly decreased from ~4.73 eV to ~4.66 eV (Figure S10A). Further increase in the Cs molar proportion from 10% to 20% caused a slight increase in WF from ~4.66 eV to ~4.76 eV. The WF did not change with further increase in Cs molar proportion to 30%. The VBM was determined by calculating the energy offset between the WF and IE; the energy offset was almost the same (~0.98 eV) at all FA:Cs ratios (Figure S10B). The VBM did not change much with FA:Cs molar proportion because the VBM of MHPs is determined mainly by the Pb s orbital and the halogen p orbital.65 IE was lowest at FA:Cs = 90:10 (Table S5).

XPS analysis of FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} polycrystalline films provides information about chemical species and bonding states at the film surface (Figures S11, S12, S13). The survey spectra showed the distinct peaks of Cs 3d, N 1s, C 1s, Pb 4f, and Br 3d orbitals (Figure S11). To identify the bonding status of each species, the Cs 3d, N 1s, Pb 4f, and Br 3d spectra were each deconvoluted by fitting Gaussian–Lorentzian curves (Figure S12). All peak positions were considered using the Au 4f\textsubscript{7/2} peak at 84.0 eV as a reference. In the Cs 3d and N 1s spectra, the gradual increase in the Cs molar proportion of FA\textsubscript{1−x}Cs\textsubscript{x}PbBr\textsubscript{3} polycrystalline films was verified by the gradually increasing height of Cs 3d peaks (at 723.90–724.25 eV for Cs 3d\textsubscript{5/2}; at 737.85–738.15 eV for Cs 3d\textsubscript{3/2}) (Figure 3).
S13A) and the gradually decreasing height of the N 1s peak at 399.65–399.95 eV (Figure S13B) because the N 1s peak can be assigned to (N⁺–C–N⁻)⁺ bonds of FA⁺ cations. Gradual peak shifts of up to ~0.4 eV toward lower binding energy were observed for all elements with increasing Cs molar proportion from 0 to 30 mol % (Figure S13). We attribute these peak shifts to the lower electronegativity of Cs⁺ cations than FA⁺ cations. Cs⁺ pulls electrons of adjacent nuclei less strongly than FA⁺ does. Therefore, Cs⁺ leaves less positive charge effective at the other nuclei than FA⁺ does and correspondingly decreases the binding energy in XPS. The Br 3d spectra showed the peaks at 67.43–67.81 eV (Br 3d₃/₂) and 68.46–68.83 eV (Br 3d₅/₂) (Figure S12D, Figure S13D), which matches well with a previous report.² Metallic Pb peaks were not observed in Pb 4f spectra (Figures S12C, S13C).

We fabricated FAₓ₀.₉Cs₀.₁PbBr₃ PeLEDs and measured their current-voltage-luminance characteristics. The polycrystalline pure FAPbBr₃ PeLED had CEmax = 7.96 cd A⁻¹, which is slightly lower than that of a PeLED based on FAPbBr₃ nanoparticles (9.16 cd A⁻¹).¹⁶ Incorporation of 10 mol % Cs⁺ cations increased CEmax from 7.96 cd A⁻¹ to 14.5 cd A⁻¹ and also increased maximum luminance (Lmax) from 3617 cd m⁻² to 9834 cd m⁻² (Figure 4A, Table 1). CEmax = 14.5 cd A⁻¹ corresponds to a EQEmax = 3.10% (Table 1). To the best of our knowledge, this is the highest reported efficiency among the reported MAPbBr₃ PeLEDs with varying FA:Cs molar ratios.

Table 1. CEmax, EQEmax, λmax, EL Peak Position, and CIE Coordinates of FAₓ₀.₉Cs₀.₁PbBr₃ PeLEDs with Varying FA:Cs Molar Ratios

<table>
<thead>
<tr>
<th>FA:Cs (mol:mol)</th>
<th>CEmax (cd A⁻¹)</th>
<th>EQEmax (%)</th>
<th>Lmax (cd m⁻²)</th>
<th>EL peak position (nm)</th>
<th>CIE coordinates (x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100:0</td>
<td>7.96</td>
<td>1.69</td>
<td>3617</td>
<td>543</td>
<td>0.2828, 0.7024</td>
</tr>
<tr>
<td>90:10</td>
<td>14.5</td>
<td>3.10</td>
<td>9834</td>
<td>541</td>
<td>0.2746, 0.7098</td>
</tr>
<tr>
<td>80:20</td>
<td>9.10</td>
<td>1.96</td>
<td>9288</td>
<td>541</td>
<td>0.2711, 0.7118</td>
</tr>
<tr>
<td>70:30</td>
<td>2.85</td>
<td>0.739</td>
<td>3492</td>
<td>537</td>
<td>0.2451, 0.7313</td>
</tr>
<tr>
<td>60:40</td>
<td>1.26</td>
<td>0.282</td>
<td>3712</td>
<td>533</td>
<td>0.2177, 0.7496</td>
</tr>
</tbody>
</table>

CONCLUSIONS

We have realized high-efficiency polycrystalline FAₓ₀.₉Cs₀.₁PbBr₃ PeLEDs with a CEmax of 14.5 cd A⁻¹, which is the highest reported efficiency among PeLEDs based on FA-Cs mixed MHPs. The high efficiency was achieved by fabricating uniform full-coverage FAₓ₀.₉Cs₀.₁PbBr₃ polycrystalline films simply from precursor solutions and optimizing the FA:Cs molar proportion; the process does not use QDs. As the Cs molar proportion increased, the lattice constant and crystallinity gradually decreased and the PL spectrum gradually blue-shifted. The gradual changes in peak positions of XRD patterns, XPS, and steady-state PL and EL spectra demonstrated that the FAₓ₀.₉Cs₀.₁PbBr₃ polycrystalline films were composed of a single phase. At the optimum composition (FA:Cs = 90:10 (mol:mol)), the average grain size decreased from 325 nm to 199 nm and the IE had the minimum value of ~5.64 eV. PLQE, PL lifetime, and temperature-dependent PL measurement showed that the inclusion of a small proportion (~10 mol %) of Cs⁺ cations in FAPbBr₃ increases PLQE and PL lifetime and suppresses the thermally induced PL quenching, possibly by reducing grain size and consequently strengthening spatial confinement of charge carriers or excitons and by reducing the density of trap states. Further increase in the Cs molar proportion from 10% decreased the PLQE of the films and CE and L of PeLEDs, possibly as a result of the decrease in crystallinity and concomitant increase in trap density. Also, the incorporation of Cs⁺ cations increased the photostability of FAₓ₀.₉Cs₀.₁PbBr₃ polycrystalline films. The decreased PL intensity was slowly recovered in the dark; this slow recovery and the absence of changes in absorbance, PL peak position, and XRD peak position after the PL decrease imply that the PL decrease in the FAₓ₀.₉Cs₀.₁PbBr₃ films was not a result of decomposition of FAₓ₀.₉Cs₀.₁PbBr₃ but of formation of light-induced metastable states that cause nonradiative recombination.

Our study has suggested that the fabrication of uniform polycrystalline MHP films with the optimum FA:Cs molar ratio can be a simple and effective strategy to increase EL efficiency.
and brightness of FA-Cs-based green PeLEDs. However, the FA\textsubscript{1-x}Cs\textsubscript{x}PbBr\textsubscript{3} PeLED still has lower EL efficiency (14.5 cd A-1) than the state-of-the-art MAPbBr\textsubscript{3} PeLEDs (42.9 cd A-1).2 Therefore, further studies should be conducted to identify EL efficiency limitations and to develop strategies to overcome them. The introduction of a Ruddlesden–Popper phase to FA-Cs-based MHPs may be an effective solution to suppress exciton dissociation with increased effective exciton binding energy and increase geminate recombination. Also, the incorporation of a small proportion of additives to FA-Cs-based MHPs may lead to in situ formation of nanocrystals in the bulk polycrystalline films and thereby increase EL efficiency.20 Furthermore, passivation methods that reduce the trap density of MHP films may be effective to increase radiative recombination; for example, the surface passivation by using trietylphosphine oxide9 or amine derivatives10 can increase luminescence efficiency. Ultimately, the chemical structure of passivation agents that can heal the defects of MHP polycrystalline films most effectively must be identified, and effective processes to include the passivation agents in MHP emission layers without blocking charge transport must be developed. We envision that these approaches to fabrication of high-efficiency PeLEDs may become a core next-generation technology in the display and lighting industries and in academic societies that study light emitters and optoelectronics.

METHODS AND EXPERIMENTAL DETAILS

Fabrication of MHP Polycrystalline Films. FA\textsubscript{1-x}Cs\textsubscript{x}PbBr\textsubscript{3} solutions (30.0 wt %) were prepared by mixing FABr (Dyosol), CsBr (Aldrich), and PbBr\textsubscript{2} (Aldrich) in DMSO in appropriate FA:Cs molar ratio, with (FABr + CsBr):PbBr\textsubscript{2} molar ratio = 1.1:1. Low-conductivity SOCP layers (40 nm) were formed on cleaned glass or Si native wafer substrates as previously reported.7 Then FA\textsubscript{1-x}Cs\textsubscript{x}PbBr\textsubscript{3} solutions were spin-coated onto the SOCP layers in a N\textsubscript{2} atmosphere (stage 1:500 rpm for 7 s, stage 2:3000 rpm for 90 s). During stage 2, an additive-based nanocrystal-pinning process that induces immediate crystallization of MHPs by washing out DMSO with a chloroform/an additive mixture (stage 1:500 rpm for 7 s, stage 2:3000 rpm for 90 s). During stage 2, an additive-based nanocrystal-pinning process that induces immediate crystallization of MHPs by washing out DMSO with a chloroform/TBPI solution7 was applied to the spinning substrates after 30 s. Then the FA\textsubscript{1-x}Cs\textsubscript{x}PbBr\textsubscript{3} films were baked on a hot plate at 70 °C for 10 min.

LED Fabrication and Characterization. Glass/SOCP/SOCP/FA\textsubscript{1-x}Cs\textsubscript{x}PbBr\textsubscript{3} was fabricated as mentioned above, except that 100-nm-thick high-conductivity SOCP anodes2 were formed instead of the low-conductivity SOCP layers. On the FA\textsubscript{1-x}Cs\textsubscript{x}PbBr\textsubscript{3} layers, TPBI (50 nm), LiF (1 nm), and Al (100 nm) were thermally deposited in sequence in a high-vacuum chamber. Then each device was encapsulated in a N\textsubscript{2} atmosphere.

SEM Measurement. SEM images of Si wafer/SOCP/FA\textsubscript{1-x}Cs\textsubscript{x}PbBr\textsubscript{3} films were measured using a field emission SEM (MERLIN compact, ZEISS) at the Research Institute of Advanced Materials, Seoul National University.

Steady-State PL Measurement. Steady-state PL of glass/SOCP/SOCP/FA\textsubscript{1-x}Cs\textsubscript{x}PbBr\textsubscript{3} or quartz/FA\textsubscript{1-x}Cs\textsubscript{x}PbBr\textsubscript{3} samples was measured using a spectroradiometer (JASCO FP6500) without sample encapsulation. A continuous-output xenon arc lamp with a power of 150 W was used as an excitation source, and the excitation wavelength was 405 nm. For the photostability measurement, quartz substrate was used instead of glass/SOCP. The light was incident on the quartz side that is opposite the FA\textsubscript{1-x}Cs\textsubscript{x}PbBr\textsubscript{3}/air interface.

PLQE Measurement. PLQE of quartz/FA\textsubscript{1-x}Cs\textsubscript{x}PbBr\textsubscript{3} samples was measured using the same integrating sphere method reported previously (a continuous-wave 405 nm laser diode with a power density of 900 mW cm-2).5,22

TCSCC Measurement. TCSCC measurement of quartz/FA\textsubscript{1-x}Cs\textsubscript{x}PbBr\textsubscript{3}/PMMA samples was conducted using the same equipment and procedure described elsewhere,5 except a different TCSCC module was used (PicoHarp 260, PicoQuant). Instrument response function (IRF) was ignored because the PL lifetime curves were much longer than the temporal width of the IRF. The excitation power density was ~25 mW cm-2.

XPS and UPS Measurement. XPS and UPS spectra of ITO/SOCP/FA\textsubscript{1-x}Cs\textsubscript{x}PbBr\textsubscript{3} films were measured using the same procedures reported previously1 in collaboration with Korea Basic Science Institute (KBSI).

ASSOCIATED CONTENT

1. Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.8b00409. Additional SEM images and grain size calculation; additional analysis of XRD, steady-state PL, absorption, TCSCC, temperature-dependent PL, photostability results; UPS and XPS analysis; device operational lifetime (PDF).

AUTHOR INFORMATION

Corresponding Author

E-mail: twlees@snu.ac.kr, taewlees@gmail.com.

ORCID

Aditya Sadhanala: 0000-0003-2832-4894
Vijay Venugopalan: 0000-0003-4701-5536
Richard H. Friend: 0000-0001-6565-6308
Tae-Woo Lee: 0000-0002-6449-6725

Author Contributions

*H. Cho and J. S. Kim contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2016R1A3B1908431). The authors thank C.-K. Moon and J.-S. Huh for helping to investigate the PLQE trend.

REFERENCES

