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Abstract
The linewidth broadening caused by various physicochemical effects does limit the
well-known advantage of ultrahigh color purity of metal halide perovskites (MHPs) for use in
next-generation light-emitting diodes (LEDs). We have theoretically examined the quantum-
and dielectric-confinement effects of a quantum dot (QD) on the degree of photoluminescence
linewidth broadening. It is predicted that the linewidth (ΔλQC) is mainly contributed by the
two opposing effects: (i) the linewidth broadening due to the repulsive kinetic energy of
confined excitons (Δλ(KE)

QC ) and (ii) the overall linewidth narrowing caused by the attractive

Coulomb interaction (Δλ(Coul)
QC ). It is shown that the relative contribution essentially remains at

a constant value and is evaluated as Δλ(Coul)
QC /Δλ(KE)

QC = 0.42, which is independent of the QD
size and the chemical nature of semiconducting emitter. We have computed ΔλQC for various
QD sizes of the prototypical MHP emitter, MAPbBr3, where MA denotes a methylammonium
(CH3NH3) organic cation. The calculated results show that the linewidth broadening due to the
quantum confinement (ΔλQC) increases rapidly beginning at the QD radius approximately
equal to 6.5 nm but ΔλQC is less than 2 nm even at R = 1.5 nm. Thus, ΔλQC is much narrower
than the linewidth caused by the exciton-LO phonon Fröhlich coupling (∼23.4 nm) which is
known as the predominant mechanism of linewidth broadening in hybrid MHPs. Thus, the
linewidth broadening due to the quantum confinement (ΔλQC) is not a risk factor in the
realization of MHP-based ultrahigh-quality next-generation LEDs.

Keywords: linewidth broadening, quantum confinement, exciton, metal halide perovskites,
photoluminescence, light-emitting diodes

(Some figures may appear in colour only in the online journal)

1. Introduction

Metal halide perovskites (MHPs) show superior electrical
and optical properties, which give them great potential for

∗ Authors to whom any correspondence should be addressed.

use in next-generation light-emitting diodes (LEDs) [1–4].
In particular, their narrow emission linewidths, as quantified
by full width at half maximum (FWHM), can achieve ultra-
high color purity: FWHM � 20 nm and color gamut � 140%
in NTSC standard. These are superior to the properties of
organic emitters (FWHM > 40 nm and color gamut < 100%
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in NTSC standard) and inorganic quantum dot emitters
(FWHM≈ 30–40 nm and color gamut≈ 120% in NTSC stan-
dard) [5]. However, the linewidth broadening caused by vari-
ous physico-chemical effects potentially limits the well-known
advantage of narrow emission linewidths (FWHM � 20 nm)
and, thus, ultrahigh color purity of MHPs [5, 6].

Several intrinsic and extrinsic factors are known to
significantly influence the linewidth broadening of pho-
toluminescent materials. For most semiconductors, these
broadening factors (in FWHM) are decomposed into the
following four main terms [7, 8]: Δλ (T) = Γo + Γac (T) +
ΓLO (T) + Γimp, where Γo denotes temperature-independent
inhomogeneous line broadening that results from scatter-
ing due to disorder and imperfections. On the other hand,
Γac (T) (= γacT) and ΓLO (T) (= γLONLO(T)) are homoge-
neous broadening terms, which arise from acoustic and
longitudinal optical (LO) phonon scatterings with the charge-
carrier-phonon coupling strengths of γac andγLO, respectively.
Here, NLO(T ) denotes the Bose–Einstein distribution func-
tion with NLO (T) = 1/

{
e�ωLO/kBT − 1

}
, where �ωLO is the

characteristic energy of LO phonons. Γimp phenomenolog-
ically accounts for inhomogeneous scattering from ionized
impurities.

In 2016, Wright and co-workers reported their system-
atic investigations on the linewidth broadening of several
hybrid MHPs [9]: MAPbBr3, MAPbI3, FAPbBr3, and FAPbI3,
where MA and FA, respectively, denote methylammonium
(CH3NH3) and formamidinium (CH(NH2)2) organic cations.
They have shown that the long-range Fröhlich coupling
between exciton carriers and LO phonons is the major
cause of linewidth broadening in hybrid MHPs at room
temperature, where the scattering from acoustic phonons
[Γac (T)] and impurities (Γimp) is a minor component. Thus,
the broadening factors can be simplified as Δλ (T) = Γo +
ΓLO (T). They obtained this conclusion by carefully mon-
itoring the temperature-dependent FWHM of the photolu-
minescence (PL) peak and subsequently fitting it with the
Bose–Einstein distribution function. In the case of MAPbBr3

film, the FWHM of the room-temperature steady-state
peak is 23.4 nm at λ = 538 nm (corresponding to ΔωFWHM =
100 meV), which slightly exceeds the high color-purity stan-
dard of FWHM � 20 nm.

The PL efficiency itself is the most crucial factor in LEDs.
It is now well known that the PL efficiency of perovskite emit-
ters can be improved greatly if the exciton binding energy (Eb)
is increased and the exciton diffusion length (LD) is decreased
by reducing the grain size [5, 6]. An ideal approach to achieve
high Eb and low LD in perovskite emitters is to effectively con-
fine the excitons in the form of colloidal nanoparticles (NPs
with the size< 20 nm) rather than in polycrystalline perovskite
bulk films having large grain sizes (0.1–10 μm) [6, 10]. NPs
with their sizes less than the exciton Bohr diameter are called
quasi-zero-dimensional quantum dots (quasi-0D QDs). They
showed high Eb and low LD and, thereby, achieved high photo-
luminescent quantum efficiency (PLQE) at room temperature
[1, 11–15]. However, these quasi-0D QDs suffer from strong
dependence of the emission wavelength (i.e., pronounced PL

blue shift) and the linewidth broadening on the QD size, as do
inorganic QDs [16].

In case of the PL blue shift with decreasing QD size, one
can make use of this shift to the color tunability from green to
blue. On the contrary, the linewidth broadening simply deteri-
orates the color purity. In this regard, it is of great importance
to clearly elucidate the effect of the quantum-size confinement
(or size reduction) on the degree of the PL linewidth broad-
ening of perovskite emitters. In spite of its importance, little
theoretical progress has been made in this subject. In consider-
ation of this background,we have systematically examined and
clarified the effect of the QD-size confinement on the degree
of the PL linewidth broadening of MAPbBr3, the prototypi-
cal MHP. However, our theoretical approach developed in the
present study is not limited to hybrid MHP QDs but can be
applied to various types of semiconducting QDs.

2. Linewidth broadening by quantum confinement

In this section, we will theoretically formulate the PL linewidth
broadening due to the quantum-confinement effect which is
independent of the linewidth broadening caused by the well-
known carrier-LO phonon long-range Fröhlich coupling [9].
For this purpose, we will firstly examine the net energy of a
confined exciton [Eext(R;α)] in a given QD under the condition
of simultaneous quantum and dielectric confinements. We will
then theoretically formulate the uncertainty in the exciton’s
linear momentum [Δp] and its correlation with the uncertainty
in the corresponding linewidth [ΔλQC] solely caused by the
quantum confinement. As the third step, we will deduce the
uncertainty product (ΔpΔx) of an exciton confined in a QD
by considering the ground-state exciton wave function [ψo(x)]
and its Fourier transform [g (k)]. On the basis of all these
formulations, we will finally obtain an expression of ΔλQC

in terms of the QD size (R), the PL wavelength (λ) and the
effective Coulomb interaction coefficient.

2.1. Exciton energy under simultaneous quantum and
dielectric confinements

If the relative dielectric permittivity of the surrounding medi-
um or solvent is lower than that of the quantum dot (QD),
the surrounding medium tends to exert a repulsive force on
the central QD, raising a dielectric-confinement effect on the
central QD. This situation actually corresponds to the mea-
surement of high PLQE PL spectrum from the dispersed QDs
in a surrounding low-permittivity medium [6, 10, 11]. Under
this condition, the effective Coulomb interaction coefficient
(C′

1) is reduced from the well-known unmodified coefficient
C1(= 1.786) which corresponds to the purely quantum con-
finement in the absence of any dielectric-confinement effect
for the (s–s)-type ground state of exciton [17–19]. In the
below, we will theoretically correlate the modified interaction
coefficient, C′

1, with C1 and the surface-polarization integral
(Isp) which arises from the difference in the relative dielec-
tric permittivity between the QD and the surrounding low-
permittivity medium. We will subsequently show that the value
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Figure 1. A schematic diagram of an exciton in a quasi-0D QD with
the radius R. The spherical QD having the relative dielectric
permittivity of εQ

r is immersed in a low-permittivity solvent medium
of εs

r . The�re and�rh vectors, respectively, denote the distances of the
electron and the hole from the center of the QD. The image charges
e′(= +R·e

re
) and h′(= −R·e

rh
= +R·h

rh
) are located at the distances

r′e(= R2

re
) and r′h(= R2

rh
), respectively, from the center of the QD.

of C′
1 can be obtained numerically as a function of the permit-

tivity ratio, εQ
r /ε

s
r, where εQ

r and εs
r, respectively, denote the

dielectric constants (permittivities) of the central QD and the
surrounding medium (figure 1).

To correlate the modified Coulomb interaction coefficient
(C′

1) with C1, εQ
r , εs

r and Isp, let us consider the Hamiltonian
operator (HQD) of the confined exciton within the central
spherical QD having the radius R. For this purpose, we use
the following Brus–Takagahara-type standard form of H in the
presence of the dielectric-confinement effect [20, 21]:

HQD = − �
2

2me
∇2

e −
�

2

2mh
∇2

h −
e2

4πεoε
Q
r |re − rh|

+
e2

4πεo (2R)

∞∑
n=0

(ε̄n)−1

{(re

R

)2n
+

(rh

R

)2n
}

− e2

4πεo (R)

∞∑
n=0

(ε̄n)−1
( rerh

R2

)n
Pn(cos Θeh)

+ V(re, rh), (1)

where re and rh denote the coordinates of an electron and a
hole, respectively, me and mh are their effective masses, Pn is
the Legendre polynomial of the nth order, and Θeh designates
the angle between re and rh. The potential energy, V (re, rh)
describes the motion of the exciton quasi-particle within the
QD simulated by an infinitely deep potential well. Thus,
V (re, rh) = 0 for re, rh � R and V (re, rh) = ∞ for re, rh > R.
In equation (1), the dielectric-stiffness parameter, (εn)−1, is
defined by

(ε̄n)−1 =
(n + 1) (ε− 1)

εQ
r (nε+ n + 1)

, (2)

where ε = εQ
r /ε

s
r. The first two terms in equation (1) repre-

sent the kinetic energy and the third term depicts the direct
Coulomb interaction between an electron and a hole. The two
terms that follow the third term correspond to the surface polar-
ization energy which arises from the difference in the relative
dielectric permittivity (εr) between the semiconducting QD
and the surrounding solvent medium. The former (i.e., 4th
term) represents the repulsive self-energy of an electron and
a hole due to its own image charge (Vee′ and Vhh′ ; figure 1),
whereas the latter (i.e., 5th term) depicts the attractive interac-
tion energy between an electron and a hole via image (wrong)
charges (Veh′ and Vhe′ ).

The expectation value integral of the first three terms of
the Hamiltonian operator (≡ H1−3), as calculated using the
ground-state (s–s)-type wave function of exciton, leads to the
following expression [17]:

〈ψs
o (re, rh;α) |H1−3|ψs

o (re, rh;α)〉 = �
2π2

2μoR2
+

�
2

2μo

(
1
α

)2

− C1e2

4πεoε
Q
r(R)R

− C2e2

4πεoε
Q
r(R)α

, (3)

where μo is the effective reduced mass of exciton (i.e.,
1
μo

≡ 1
m∗

e
+ 1

m∗
h
) and C2 = 0.498. On the other hand, C1

denotes the unmodified Coulomb interaction coefficient
[= 2 − π−1

{
Si(2π) − 2−1Si(4π)

}
= 1.786] which corre-

sponds to the purely quantum confinement in the absence of
any dielectric-confinement effect [17, 18]. Equation (3) is the
most elaborate expression of the net exciton energy above the
bulk band gap, which considers the internal relative motion
between the electron and hole in a given exciton [17]. This
internal correlation effect can be implemented by including
the e–h correlation parameter (α) in the ground-state wave
function ψs

o (re, rh;α), where ψs
o (re, rh;α) is given by [17].

ψs
o (re, rh;α) = C jo

(πre

R

)
jo

(πrh

R

)
exp

(
− reh

α

)

= C
sin

(
πre
R

)
re

sin
(
πrh
R

)
rh

exp
(
− reh

α

)
, (4)

where jo is the zeroth degree spherical Bessel function and
reh denotes the distance between the electron and hole in a
given exciton quasi-particle. The normalization constant (C)
can be evaluated by imposing the following normalization con-
dition [17]:

∫ R
0 dre

∫ R
0 drh

∫ |re+rh |
|re−rh|

drehrerhreh|ψs
o (re, rh;α)|2 = 1.

Detailed mathematical treatments on the evaluation of
C are given in appendix of reference [21]. As shown in
equation (4), the parameter α, appears in the correlation part,[
exp(−reh/α)

]
, of the ground-state wave function for a spheri-

cal QD [17] or a cubic QD [22]. According to equation (3), the
expectation value of the attractive Coulomb interaction energy
within a QD (in the absence of any dielectric-confinement

3
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effect) is, thus, given by the following expression [17]:

〈ECoul〉 = − C1e2

4πεoε
Q
r(R)R

− C2e2

4πεoε
Q
r(R)α

< 0. (5)

Let us now consider the remaining two terms of the Hamil-
tonian that corresponds to the surface polarization energy
(ESP). The 4th term of equation (1) corresponds to the repul-
sive self-interaction (HSI = Vee′ + Vhh′) of the hole and elec-
tron with their own images. On the contrary, the 5th term
depicts the energies of interaction of the hole and electron with
the ‘wrong’ images (HWI = Veh′ + Vhe′). Takagahara evaluated
this self-polarization term to assess the dielectric-confinement
effect [21]. According to our notation, the expectation value of
this self-polarization term can be written as

〈ESP〉 = 〈ψs
o (re, rh;α) |HSP|ψs

o (re, rh;α)〉

=

{
2π−2Isp − (ε̄0)−1

}
e2

4πεoε
Q
r(∞)R

≡ +ΔCe2

4πεoε
Q
r(R)R

, (6)

where HSP = HSI + HWI, (ε0)−1 = 1
εs

r
− 1

ε
Q
r

according to

equation (2), and the integral Isp (equal to I3 in Takagahara’s
notation [21]) is defined as

Isp = π

∫ π

0
dx sin2 x

∞∑
n=0

(εn)−1
( x
π

)2n
. (7)

It should be noted that εQ
r(∞) appeared in the 3rd term of

equation (6) is the relative dielectric permittivity of the
QD constituting material in the bulk unconfined state where
R →∞ and, thus, it is not equal to εQ

r(R) appeared in the 4th
term. Here, we are mainly interested in the effect of dielectric
confinement on the modified interaction coefficient (C′

1) in the
vicinity of the critical size (Rc) that corresponds to the onset
of the PL blue shift. Since the band gap at Rc is equal to the
bulk band gap, Eg(b), ε

Q
r(R) at Rc can be safely replaced by εQ

r(∞).
Under this condition, the last expression of equation (6) is per-
missible. Thus, the effective Coulomb interaction coefficient
(C′

1) modified by the dielectric-confinement effect is given by

C′
1 ≡ C1 −ΔC = C1 −

{
2π−2Isp − (ε0)−1

}
= −1

2
A1. (8)

As shown in equation (8), there is a distinct difference
between the two contributions, C1 and ΔC, to the modi-
fied interaction coefficient. The unmodified Coulomb inter-
action coefficient C1(=1.786) is related exclusively to the
pure quantum-confinement effect in the absence of any low-
permittivity dielectric medium. The presence of the surround-
ing low-permittivity dielectric medium provides an additional
confinement effect on a QD [21]. This repulsive dielectric-
confinement effect always leads to a decrease in the effective
Coulomb-interaction coefficient by ΔC. The last expression
of equation (8) is written to correlate C′

1 with the notation of
Takagahara [21]. Thus, A1 = −2C′

1. Takagahara numerically
evaluated A1 as a function of the permittivity ratio,

(
εQ

r /ε
s
r

)
[21]. Thus, one can evaluate C′

1 for various values of
(
εQ

r /ε
s
r

)

using equation (8). As reflected in equation (8), Isp is a mea-
sure of the repulsive dielectric-confinement effect. On the con-
trary, (ε0)−1(> 0) tends to increase the degree of attractive
Coulomb interaction and gives a negative contribution to the
dielectric-confinement effect. On the other hand, the unmodi-
fied Coulomb interaction coefficient (C1), which corresponds
to the pure quantum-confinement effect, is given by

C1 = 1.786 =
4IDC

π
=

4
π

∫ π

0
dxe

∫ π

0
dxh

1
x>

sin2 xe sin2 xh,

(9)
where x> =max(xe, xh). The integral IDC is equal to I2 in
Takagahara’s notation [21].

Combining equations (1), (3), and (6), one can obtain the
following expression of the net exciton energy above the
bulk band gap or the band-gap increment [δEg (R;α)] with an
arbitrary degree of the e–h correlation:

δEg (R;α) = 〈ψs
o (re, rh;α) |HQD|ψs

o (re, rh;α)〉

=
�

2π2

2μoR2
− C′

1e2

4πεoε
Q
r(R)R

+
�

2

2μo

(
1
α

)2

− C2e2

4πεoε
Q
r(R)α

. (10)

Equation (10) is a starting point of further analysis of vari-
ous exciton-related physical properties. Let us now consider
the ratio of the two distinct proportionality terms appeared in
equation (10).(

e2

4πεoε
Q
r(R)

)
/

(
�

2

2μo

)
=

2μoe2

4πεoε
Q
r(R)�

2
≡ 2

aB(R)
, (11)

where aB(R) in equation (11) is the effective e–h radius for
a confined exciton and, thus, it is different from the exciton
Bohr radius for the bulk exciton

(
aB(∞)

)
. The exciton Bohr

radius for the bulk unconfined state is given by the well-

known Griffiths equation, aB(∞) =
4πεoε

Q
r(∞)�

2

μoe2 , where R →∞
and εQ

r(∞) designates the relative dielectric permittivity of the
QD-constituting bulk semiconductor with the absence of any
confinement effect. Incorporating equation (11) into equation
(10) then yields

δEg (R;α) =
�

2

2μo

[{
π2

R2
+

(
1
α

)2
}

− 2
aB(R)

{
C′

1

R
+

C2

α

}]
.

(12)

2.2. Uncertainty in the linear momentum in terms of
linewidth broadening

The band-gap increment associated with the PL blue shift[
δEg (R;α)

]
can also be correlated with its PL frequency or

wavelength by the Planck condition:

δEg (R;α) ≡ �ω − Eg(b) = �ω − �ωo = �

{
2πc
λ

− 2πc
λo

}
,

(13)
where �ωo denotes the energy corresponding to the bulk band
gap

(
Eg(b)

)
. Thus, Eg(b) = �ωo =

2πc�
λo

. We can experimentally

4
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find λo by measuring the PL wavelength at the onset of PL blue
shift. On the contrary, λ is the characteristic PL wavelength of
a confined QD having the radius R.

Combining equation (12) with equation (13), one can obtain
the following relation for the uncertainty in the exciton energy
[Δ

(
δEg

)
] in terms of five relevant uncertainties:

Δ
(
δEg(R;α)

)
=

�
2

2μo

{
π2Δ

(
1

R2

)
− 2C′

1

aB(R)
Δ

(
1
R

)

+Δ

(
1
α2

)
− 2C2

aB(R)
Δ

(
1
α

)}

=
2πc�
λo

Δ

{
(λo − λ)

λ

}
. (14)

The four uncertainties in equation (14) can be expanded to
yield the following forms:

Δ

(
1
R

)
=

{
1(

R − 1
2ΔR

) − 1(
R + 1

2ΔR
)}

=
ΔR{

R2 − 1
4 (ΔR)2

} ≈ ΔR
R2

(15)

Δ

(
1
α

)
=

{
1(

α− 1
2Δα

) − 1(
α+ 1

2Δα
)}

=
Δα{

α2 − 1
4 (Δα)2

} ≈ Δα

α2
(16)

Δ

(
1

R2

)
=

{
1(

R − 1
2ΔR

)2 − 1(
R + 1

2ΔR
)2

}

=
2RΔR{

R2 − 1
4 (ΔR)2

}2 ≈ 2ΔR
R3

(17)

Δ

(
1
α2

)
=

{
1(

α− 1
2Δα

)2 − 1(
α+ 1

2Δα
)2

}

=
2αΔα{

α2 − 1
4 (Δα)2

}2 ≈ 2Δα

α3
. (18)

Here,ΔR/2 can be viewed as the uncertainty in R andΔα/2 as
the uncertainty in α. We will later show thatΔR for fixed R and
λ is proportional to the uncertainty in the linear momentum of
exciton. On the other hand, the uncertainty in the wavelength
ratio in equation (14) can be expanded to yield the following
form:

Δ

{
(λo − λ)

λ

}
=

{
λo(

λ− 1
2ΔλQC

) − 1

}

−
{

λo(
λ+ 1

2ΔλQC

) − 1

}

=
λoΔλQC{

λ2 − 1
4

(
ΔλQC

)2
} ≈ λoΔλQC

λ2
. (19)

Here, 1
2ΔλQC can be viewed as the uncertainty in λ and

ΔλQC thus denotes the FWHM of a hypothetical PL spectrum

which would be solely caused by the quantum and dielectric
confinements.

Substituting equations (15) and (19) into equation (14)
yields

Δ
(
δEg(R;α)

)
=

�
2

μo

{
π2ΔR

R3
+

Δα

α3

}

− �
2

μoaB(R)

{
C′

1ΔR
R2

+
C2Δα

α2

}
=

hcΔλQC

λ2
.

(20)

The 1st term in the 2nd expression of equation (20) represents
the uncertainty in the kinetic energy, Δ (Ek). This is because
we have the following equality:

Δ (Ek) =
�

2π2

2μo
Δ

(
1

R2

)
=

�
2π2ΔR
μoR3

=
h2ΔR
4μoR3

, (21)

where h denotes the Planck constant (=2π�). On the other
hand, we can establish the following relation if we treat an
exciton as a translationally moving point particle (at its center-
of-mass) with the linear momentum, p:

Δ (Ek) =
Δ

(
p2

)
2μo

=
1

2μo

{(
p+

1
2
Δp

)2

−
(

p− 1
2
Δp

)2
}

=
pΔp
μo

=
hΔp
μoλ

. (22)

In obtaining the last expression of equation (22), we used the
following well-known De Broglie relation: p = �k = h

2π
2π
λ

.
Combining equation (21) with equation (22), we obtain the
following relation between ΔR and Δp:

1
2
Δ

(
1

R2

)
=

ΔR
R3

=
4Δp
hλ

. (23)

Thus, the uncertainty in the QD size is directly corelated with
the uncertainty in the linear momentum of exciton. Substi-
tuting equation (23) into equation (20) for ΔR leads to the
following equation:

Δ
(
δEg

)
=

�
2

μo

{
π2

R
− C′

1

aB(R)

}
ΔR
R2

+
�

2

μo

(
Δα

α2

) {
1
α
− C2

aB(R)

}

=
�

2

μoR

{
π2 − C′

1R
aB(R)

}
4RΔp

hλ

+
�

2

μo

(
Δα

α2

) {
1
α
− C2

aB(R)

}
=

hcΔλQC

λ2
. (24)

Thus, we are able to correlate the linewidth broadening (ΔλQC)
with the uncertainty in the linear momentum of a confined
exciton (Δp) and with the uncertainty in the quantum e–h
correlation parameter (Δα).
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Figure 2. Quantum variationally optimized α vs · R and 〈reh〉R vs · R
curves as obtained by Kayanuma [17]. Herein, 〈reh〉R denotes the
mean distance between an electron and a hole in a given exciton pair
which is confined in a quasi-0D QD with the radius R. Adapted with
permission from Kayanuma (1986 Solid State Commun. 59 405).
Copyright 1986 Pergamon Press (Elsevier Ltd).

According to the quantum variational optimization (i.e.,
minimization) by Kayanuma [17], the following simple appro-
ximate relation can be written for R � ∼6aB(∞):

〈reh〉∞ ≈ 3
2

aB(∞), (25)

where 〈reh〉∞ and aB(∞), respectively, denote the mean distance
between an electron and a hole in a given exciton pair and
the exciton Bohr radius in the bulk unconfined state. On the
contrary, the mean electron–hole distance, 〈reh〉R, is not con-
stant but tends to decrease with decreasing QD radius [17].
From the result of quantum variational simulation [17], we
have extracted the following simple relation between 〈reh〉R
and the QD radius for 0 < R < 2aB(∞) (figure 2):

〈reh〉R
aB(∞)

=
1
2

(
R

aB(∞)

)
. (26)

Considering a simple proportionality relation given in equation
(25), one can write the following simple rule: 〈reh〉R /〈reh〉∞ ≈
aB(R)/aB(∞), where aB(R) denotes the variable exciton Bohr
radius for a confined exciton in a QD having the radius R. Then,
combining this ratio with equation (25) yields

〈reh〉R =
S
2

aB(R). (27)

Considering the structure of equation (25), one can reason
that the proportionality constant S is very close to 3. Using
the definition of the Griffiths equation, one can readily show
that S = 3 corresponds to the following relation: 〈reh〉R ={
εQ

r (R)/εQ
r (∞)

}
〈reh〉∞. This indicates that εQ

r (R) < εQ
r (∞)

because 〈reh〉R < 〈reh〉∞. In addition to this, 〈reh〉R decreases
with decreasing QD size (figure 2) and asymptotically
approaches 〈reh〉∞/εQ

r (∞) because εQ
r (R → ao) = 1, where ao

is the atomic Bohr radius
(
≡ 4πεo�

2

mee2 = 0.0529 nm
)

. Substitut-

ing equation (27) into equation (26) then yields a simple linear
relation between aB(R) and the QD radius for ao < R < 2aB(∞):

aB(R) =
1
S

R ≈ 1
3

R. (28)

Thus, the asymptotic lower limit of aB(R) is ao
3 . On the other

hand, the bulk exciton Bohr radius (aB(∞)) can be numeri-
cally estimated using the Griffiths equation if μo and εQ

r(∞)
are known. In the case of MAPbBr3, μo = 0.117mo [23]
and εQ

r(∞) ≈ 11 were adopted from the Griffiths equation
and the onset of the strong PL peak shift with decreas-
ing R at room temperature [24]. Taking these two val-

ues, we deduce the following result: aB(∞) =
4πεoε

Q
r(∞)�

2

μoe2 =

1.11×10−10×11×(1.054×10−34)2

0.117×9.11×10−31×(1.602×10−19)2 ≈ 5.0 (nm) [24]. Thus, one can

expect that equation (28) is valid for the QD radius up to
∼10 nm. Substituting equation (28) into equation (24) yields
the following expression of the uncertainty in the band-gap
increment:

Δ
(
δEg

)
=

�
2

μoR

{
π2 − 3C′

1

} 4RΔp
hλ

+
�

2

μo

(
Δα

α2

){
1
α
− 3C2

R

}

=
hcΔλQC

λ2
. (29)

One should replace
(
Δα
α2

)
-terms by Δp-containing terms to

correlate the uncertainty in the exciton’s momentum with the
corresponding PL linewidth broadening.

Let us then express the quantum correlation parameter (α)
in terms of the QD radius to suitably replace

(
Δα
α2

)
-terms by

Δp-containing terms. Using the result of quantum variational
optimization [17], we have extracted the following simple lin-
ear relation between the e–h correlation parameter (α) and the
QD radius for R < ∼2.3aB(∞) (figure 2):

α = −sR + 2.0aB(∞), (30)

where the slope (−s) of Δα/ΔR has an optimum numerical
value of −0.27 [17].

Thus, we have: Δ (α) = −sΔR. Using these two expres-
sions, we obtain(

Δα

α2

)
=

−sΔR(
−sR + 2.0aB(∞)

)2 =
−4sR3Δp

hλ
(
−sR + 2.0aB(∞)

)2 .

(31)
In obtaining the last expression, we used the ΔR −Δp rela-
tion presented in equation (23). Substituting equation (31) into
equation (29) and rearranging the resulting relation, we even-
tually obtain the following equation that relates the uncertainty
in the linear momentum (Δp) to the linewidth broadening due
to the quantum-confinement effect

(
ΔλQC

)
:

Δp =
μocπ2ΔλQC

Rλ

{(
π2 − 3C′

1

)
1
R +

sR2
(

3C2
R − 1

α

)

(−sR+2.0aB(∞))2

} . (32)

In section 2.3, we will exploit equation (32) to predictΔλQC in
terms of R and λ by combining it with the uncertainty product
of the ground-state exciton confined in a QD.
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2.3. The uncertainty product and linewidth broadening

Considering the center-of-mass motion, one can regard the
exciton as a neutral single particle moving inside a semi-
conducting QD having an infinite potential well. Thus, the
QD potential V (r) = 0 for 0 � r � R, where r is the posi-
tion of exciton’s center-of-mass from the center of QD. Let
the wave function of the exciton confined in a QD has the
following standard form because of the spherical symmetry:
ψ (r, θ,φ) = Rnl (r) Ylm (θ,φ) = ARnl (r), where Rnl (r) denotes
the radial wave function. Then, Rnl (r) satisfies the following
nonlinear Schrödinger equation:

d2Rnl

dr2
+

2
r

dRnl

dr
+

(
k2 − l(l + 1)

r2

)
Rnl = 0, (33)

with k2 ≡ 2msEk/�
2, where ms can be identified as the sum of

electron and hole effective masses, k = π/R, and �k as the sum
of electron and hole momentums. The ground-state solution
of the above 2nd-order nonlinear differential equation is given
by the 0th order spherical Bessel function [ jo (r) ∼ sin kr/kr]
for describing the motion of the exciton point-particle at its
ground state (having n = l = 0) with the kinetic energy Ek.
We then obtain the ground-state wave function of the exci-
ton point-particle undergoing one-dimensional translational
motion (ignoring the relative motion between the electron and
hole) by replacing the notation for the radial coordinate (r) by
x and jo (r) by ψo (x):

ψo (x) = A
sin

(
R−1

o x
)

x
=

√
Ro

π

sin
(
R−1

o x
)

x
=

√
R
π

sin
(
πx
R

)
x

,

(34)
where Ro ≡ R

π . The normalization constant ‘A’ appeared in
equation (34) is evaluated by imposing the following equal-
ity: 1 =

∫ +∞
−∞ |ψo(x)|2dx. Since we are mainly concerned with

the uncertainty in the translational momentum of the exciton
point-particle, we deliberately ignore the e–h correlation part
of the wave function, exp

(
− reh

α

)
, which describes the internal

relative motion between the electron and hole in a given e–h
pair.

Taking the Fourier transform of ψo (x) into the momentum
space, we obtain

g (k) =
1√
2π

∫ +∞

−∞
ψo (x) e+ikx dx

=

√
Ro

π
· 1√

2π

∫ +∞

−∞

sin
(
R−1

o x
)

x
e+ikx dx

=

√
Ro

π
·
√

π

2
=

√
R
2π

. (35)

In obtaining the right-hand-side of equation (35), we used the
following result of Fourier transform:

g (k) ≡ 1√
2π

∫ +∞

−∞

sin
(
R−1

o x
)

x
e+ikx dx =

√
π

2
if k <

π

R
.

(36)
Thus, equation (35) is valid for k < π

R = 1
Ro

. Therefore, the
probability distribution of the exciton momentum (�k) can be

Figure 3. (a) The |g(k)|2 vs · k plot, showing the probability
distribution of the exciton momentum, �k. (b) The |ψo(x)|2 vs · x
plot, showing the probability distribution of the x-dependent exciton
quasi-particle.

written as

|g(k)|2 =
R
2π

. (37)

The FWHM of |g(k)|2 is 2π
R (figure 3(a)), which can be

deduced from the normalization: 1 =
∫ +∞
−∞ |g(k)|2 dk. Thus, the

uncertainty in the exciton’s wave number is π
R

(
= 1

2 FWHM
)
,

namely

Δk =
π

R
. (38)

Let us then consider the square of the exciton wave function
to deduce the uncertainty in the exciton’s position:

|ψo (x)|2 = R
π2

sin2
(
πx
R

)
x2

. (39)

The uncertainty in the exciton’s position can be deduced from
the probability distribution, |ψo (x)|2, which is plotted as a
function of x from the center of QD (figure 3(b)). Thus, the
uncertainty in the position

(
= 1

2 FWHM
)

is

Δx ≈ R
2
. (40)

On the other hand, the uncertainty in the wave number is
Δk = π

R as given in equation (38). Thus, the uncertainty

7
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product of the exciton, which is confined in a QD having the
radius R, is given by the following relation:

ΔpΔx = �ΔkΔx = �
π

R
R
2
=

π

2
� ≈ 3

2
�. (41)

Thus, we can remove the inequality relation in the uncer-
tainty product (i.e., ΔpΔx � �

2 ) and express the uncertainty
product explicitly using the above equality relation. We will
use equation (41) in predicting the contribution of the quan-
tum confinement of exciton

(
ΔλQC

)
to the net linewidth

broadening in the PL spectrum.
Combining equation (40) with equation (41), we obtain:

ΔpR
2 ≈ 3

2�. Substituting this result into equation (32) yields

ΔλQC =
3�λ
μocR

{(
1 − 3C′

1

π2

)
+

sR3
( 3C2

R − 1
α

)
π2

(
−sR + 2.0aB(∞)

)2

}
.

(42)
The first term in the parenthesis (i.e., 1) represents the con-
tribution of the exciton’s kinetic energy (Ek) to the linewidth

broadening. On the contrary, the second term (i.e.,− 3C′
1

π2 ) sig-
nifies the net contribution of the Coulomb interaction energy
to the linewidth broadening. The third expression that con-
tains

( 3C2
R − 1

α

)
-term does describe the contribution of the

e–h correlation energy to the linewidth broadening. It can be
shown readily that the correlation effect (i.e., the 3rd term)
is relatively negligible, in general. We will computationally
show this point in section 3.1. Therefore,ΔλQC is mainly con-
tributed by the two opposing effects: (i) the linewidth broad-
ening due to the repulsive kinetic energy of confined excitons
and (ii) the linewidth narrowing caused by the net attractive
Coulomb interaction. Then, we obtain

ΔλQC ≈ 3�λ
μocR

(
1 − 3C′

1

π2

)
≡ Δλ(KE)

QC −Δλ(Coul)
QC . (43)

Equation (43) does explicitly state that the kinetic-energy term
promotes the linewidth broadening while the Coulomb inter-
action tends to reduce the linewidth (i.e., linewidth narrowing).
We will numerically examine the R-dependent linewidth and
the three relative contributions in section 3.1.

3. Computational results and discussion

3.1. Two opposing contributions to linewidth broadening

As described in equation (42), the three distinct factors con-
tribute to the linewidth broadening caused by the quantum
confinement (ΔλQC). Before evaluating the three relative con-
tributions to ΔλQC, one should find the effective Coulomb
interaction coefficient (C′

1). PL emission measurement is typi-
cally carried out by dispersing MHP NPs in a low-permittivity
(nonpolar) solvent having the relative dielectric permittivity of
εs

r. In case of the prototypical emitter MAPbBr3, the dispersing
medium (solvent) is mainly composed of toluene (εs

r ≈ 2.5 )
with a minor amount of surface-capping agent such as oleic
acid [24]. According to the numerical calculations [21], the
A1 parameter appeared in equation (8) is −2.78 at (εQ

r /ε
s
r)

≈ 3. Thus, the modified Coulomb interaction coefficient is:
C′

1 = − 1
2 A1 = +1.39.

Let us evaluate the three relative contributions to ΔλQC

for a QD with its radius (R) equal to aB(∞) which is the
exciton Bohr radius in the bulk unconfined state. In case
of the MAPbBr3 emitter, aB(∞) ≈ 5.0 (nm) as described in
section 2.2. In addition, α = −sR + 2.0aB(∞) = −0.27R +
2.0aB(∞) = 1.73aB(∞), according to equation (30). Using this
result, the 3rd term inside the grand parenthesis of equation
(42) can be calculated as

sR3
( 3C2

R − 1
α

)
π2

(
−sR + 2.0aB(∞)

)2

=
0.27 ×

(
1.0aB(∞)

)3
{

3×0.498
aB(∞)

− 1
1.73aB(∞)

}
9.87 ×

(
1.73aB(∞)

)2

= 0.008. (44)

On the contrary, 1 :
3C′

1
π2 = 3×1.39

9.87 = 1.0 : 0.42, which is regard-
less of the QD size R. In other words, the 2nd line-narrowing
Coulomb interaction term in equation (42) is ∼42% of the 1st
line-broadening term which is caused by the repulsive kinetic
energy of a confined exciton. Thus, the relative contribution
of the 3rd e–h correlation term, which is caused by the rela-
tive internal motion between an electron and a hole, is less than
1% and can be safely ignored inΔλQC. Let us now evaluate the
contribution of the 3rd correlation term for a QD at R = 2aB(∞)

to see the effect of size increment on the linewidth broadening.
In this case, α = −sR + 2.0aB(∞) = −0.27R + 2.0aB(∞) =
−0.27 × 2aB(∞) + 2.0aB(∞) = 1.46aB(∞). Using this result,
the 3rd term inside the grand parenthesis of equation (42) at
R = 2aB(∞) can be computed as

sR3
( 3C2

R − 1
α

)
π2

(
−sR + 2.0aB(∞)

)2

=
0.27 ×

(
2.0aB(∞)

)3
{

3×0.498
2aB(∞)

− 1
1.46aB(∞)

}
9.87 ×

(
1.46aB(∞)

)2

= 0.006. (45)

The 3rd e–h correlation term is negligibly small and is even
slightly reduced. According to our estimate, the 3rd e–h cor-
relation term, regardless of the QD size, is too small to have
any meaningful contribution to ΔλQC.

In view of the above computational results, ΔλQC is mainly
contributed by the two opposing effects: (i) the linewidth
broadening due to the repulsive kinetic energy of confined
excitons (Δλ(KE)

QC ) and (ii) the linewidth narrowing caused by

the attractive Coulomb interaction (Δλ(Coul)
QC ). As briefly men-

tioned, the relative contribution remains at a constant value and
can be quantitatively evaluated as

Δλ(Coul)
QC

Δλ(KE)
QC

=
3C′

1

π2
=

3 × 1.39
9.87

= 0.42. (46)

We have computed ΔλQC for various values of R to assess the
quantum-confinement effect on the net linewidth broadening
of the protypical MHP emitter, MAPbBr3. For this purpose, we
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Table 1. The QD-size-dependent linewidth broadening of
MAPbBr3 due to the quantum confinement (ΔλQC ≡ ΓQC) with
the two main contributions to ΔλQC, namely, Δλ(KE)

QC and
Δλ(Coul)

QC . Herein, we adopted μo = 0.117mo [23] in the
calculation of Δλ(KE)

QC , where mo denotes the free-electron mass
(9.11 × 10−31 kg). Notice that dimensionless

(
λ/R

)
values scale

well with ΔλQC values over a wide range of R, which is
theoretically supported by equation (43).

D(nm) R(nm) λ(nm) Δλ(KE)
QC (nm) Δλ(Coul)

QC (nm) ΔλQC(nm)

35 17.5 514 0.29 0.12 0.17
27 13.5 512 0.38 0.16 0.22
11 5.5 501 0.90 0.38 0.52
5 2.5 481 1.90 0.80 1.10
3 1.5 470 3.10 1.30 1.80

Figure 4. The net linewidth broadening due to the quantum
confinement (ΔλQC) plotted as a function of the QD size, R.

took the experimental values of the R-dependent PL emission
wavelength (λ) as reported by Kim et al [24]. All of the cal-
culated results, together with R-dependent λs, are summarized
in table 1. As shown in figure 4, the net linewidth broaden-
ing due to the quantum confinement (ΔλQC) increases rapidly
beginning at the QD radius approximately equal to 6.5 nm
which is ∼1.0 aB(∞) (aB(∞) ≈ 5.0 nm; section 2.2). How-
ever, ΔλQC is smaller than 2.0 nm even at the smallest syn-
thesized QD of 1.5 nm (table 1). Indeed,ΔλQC of 2 nm is only
10% of the FWHM of 20 nm for ultrahigh color purity [5].
Thus, the linewidth broadening due to quantum confinement
(ΔλQC) is not a risk factor in the realization of MHP-based
ultrahigh-quality next-generation LEDs.

3.2. Comparison with the exciton-LO phonon Fröhlich
coupling

As described in section 1, the long-range Fröhlich cou-
pling between exciton carriers and LO phonons is the pre-
dominant mechanism of linewidth broadening [9] with a
vanishingly weak exciton-acoustic phonon coupling [25] in
hybrid MHPs. In case of the MAPbBr3 emitter, the net
linewidth due to the carrier-LO phonon coupling [ΓLO (T)]
is 23.4 nm, including the background contribution from the

temperature-independent inhomogeneous line broadening
(Γo) of ∼4.5 nm at 300 K [9]. Thus, the linewidth due to the
quantum confinement (ΔλQC = ΓQC) is much narrower than
that of the Fröhlich coupling (ΓLO). However, a significantly
reduced long-range Fröhlich coupling with a concomitant
linewidth narrowing is expected at a substantially reduced QD
size. The effect of dimensional variation on the exciton-LO-
phonon coupling and the consequent PL linewidth broaden-
ing has not been systematically investigated yet. Unlike local-
ized excitons in GaAs/AlAs superlattices [26], a remarkably
reduced long-range Fröhlich interaction was reported in the
quasi-zero-dimensionalZnO QDs (∼4 nm in the average size),
as compared with the unconfined bulk ZnO crystals [27]. This
reduced exciton-LO phonon coupling is accompanied with a
linewidth narrowing (i.e., decrease in ΓLO) at a fixed tempera-
ture since ΓLO (T) = γLO/

{
e�ωLO/kBT − 1

}
, where γLO is the

exciton-LO phonon coupling strength. The reduced exciton-
LO phonon coupling in a confined QD is closely related to a
suppressed formation of the large Fröhlich polaron [6] which,
in turn, is caused by inhibition in the development of a macro-
scopic electric-field in a QD smaller than a certain critical
size. The formation of a macroscopic electric-field is nec-
essary for an efficient exciton-LO phonon Fröhlich coupling
[28, 29] which leads to a significant line broadening in MHPs
[9]. Thus, search for a possible cross-over between ΓLO and
ΓQC(≡ ΔλQC) at a substantially reduced QD size would be an
interesting subject of future research.

4. Conclusions

We have theoretically shown that the PL linewidth broadening
due to the quantum confinement (ΔλQC) is mainly contributed
by the two opposing effects: (i) the linewidth broadening due to
the repulsive kinetic energy of confined excitons (Δλ(KE)

QC ) and
(ii) the linewidth narrowing caused by the attractive Coulomb
interaction (Δλ(Coul)

QC ). According to our prediction, the relative
contribution essentially remains at a constant value and can be
quantitatively evaluated as Δλ(Coul)

QC /Δλ(KE)
QC = 0.42, which is

independent of the QD size (R) and the chemical nature of
semiconductor emitter. On the contrary, the contribution of
the quantum correlation term, which is caused by the inter-
nal relative motion between an electron and a hole in a given
exciton, is estimated to be negligible. According to our the-
oretical prediction, the net linewidth broadening due to the
quantum confinement (ΔλQC) increases rapidly beginning at
the QD radius approximately equal to 6.5 nm for the MAPbBr3

emitter.
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